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The optical vortices are usually created outside the laser cavity using different optical masks and holograms. The vortex 
structures are characterized by helical phase fronts. Their solutions are governed by the 2D Leontovich scalar equation and 
admit amplitude and phase singularities.In present work we investigated the formation of vector vortex structures of optical 
pulses, propagating in concave and convex gradient optical fibers in nonlinear regime. The corresponding vector system of 
amplitude equations is solved analytically and new class analytical solutions, describing the generation of vector field 
vortices in such gradient optical fibers are found. These new vector vortices admit amplitude type singularities, but not 
phase ones. Experimentally, this will look like as a special kind of depolarization of the vector field in the spot diameter.  
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1. Introduction 
 

In present paper we have theoretically investigated the 

formation of new vector type optical vortex structures. 

These vector vortices are different from the standard scalar 

ones and have not phase singularity. The phase 

singularities in propagating scalar wave field were 

observed for the first time in [1]. The scalar optical 

vortices in a bulk self-defocusing Kerr nonlinear medium 

were experimentally observed also by authors in [2]. 

These optical structures generated in laser beam were later 

described in details in [3]. In [4] the helically phased 

beams with a Laguerre-Gaussian amplitude distribution 

carrying orbital angular momentum are found. 

It is important to mention that the techniques of 

generation of scalar optical vortices are improved in recent 

years. In practice, different types of vortex structures of 

wave field can be created by optical holograms and 

various optical masks [5-9]. This gives more options for 

new applications as exploration of guiding dynamics of 

optical fibers, creation of optical tweezers, improving 

imaging, microscopy, sensing, frequency mixing and 

modulation. 

All above scalar vortex structures are based on the 

solutions of the 2D paraxial equation of Leontovich for 

laser beam [10]. These solutions admit amplitude and 

phase singularities and also infinity of integral of the 

energy. Very good approach for excluding the amplitude 

singularities by using Gaussian pulses was presented by 

authors in [11]. Scalar vortices created in fibers by using 

various methods were reported in [12-15].  

Our research is aimed at investigating the behavior of 

new type vector vortex structures propagating in concave 

and convex gradient optical fibers. Such type of fibers and 

their approach to optical communication systems was 

investigated recently in [16-18]. The refractive index of 

the concave and convex gradient optical fibers can be 

presented by the expression: 
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where 


is the vector amplitude function, that describes 

the pulse envelope, n0() and n2 are respectively the linear 

and nonlinear refractive indexes, characterizing the 

dispersion and nonlinearity of media and Sg is a constant. 

The term 𝑆𝑔(𝑥
2 + 𝑦2) gives the spatial dependence of the 

refractive index. 

Depending on the sign of the constant Sg the optical 

fibers are divided in two types [19]: 

 Concave gradient fibers for which the constant is 

bigger than zero (Sg>0). Towards the periphery of the 

waveguide it rises smoothly (Fig. 1). 

 

 
Fig. 1. Distribution of the refractive index for  

concave gradient fibers 

 

Vector type vortex solutions for such kind of fibers 

are found for the first time in [20], where in details it was 

presented the mathematical algorithm for solving the 

nonlinear system of spatio-temporal amplitude equations, 

describing the evolution of the vector components. The 
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nonlinear dispersion relation obtained after solving this 

system of equations requires balance not only between 

diffraction and nonlinearity, but also between nonlinearity 

and angular distribution of the optical vector field. A 

number of numerical simulations of these solutions were 

demonstrated. 

 Convex gradient fibers for which the constant is 

smaller than zero (Sg<0). On the fiber axis the linear 

refractive index has maximal value. To the periphery of 

the waveguides it decreases smoothly (Fig. 2). 

 

 
 

Fig. 2. Distribution of the refractive index for  

convex gradient fibers 

 

 
2. Basic equations 
 

In present investigation we will use the normalized 

nonlinear amplitude equation, describing the propagation 

of a linear polarized amplitude electrical field  Φ⃗⃗⃗ =
(𝑈, 𝑉, 0). It is written in the form [16]: 
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The parameter 𝛾  presents the nonlinearity of the 

medium and  is the transverse Laplace operator. The 

constant Sd characterizes the dispersion of the media. The 

additional third term gives the spatial dependence of the 

linear refractive index. As we already mentioned, in [20] it 

is found an exact analytical solution for vector vortex 

structures in optical fiber with concave profile (Sg > 0) of 

the spatial refractive index. An approximate solution of 

the equation above in scalar form for gradient fibers 

(Sg<0) is described in [19]. 

In this paper we are looking for exact analytical 

solution in vector form of equation (2) in the case of Sg<0 

for vortex structures, generated in gradient fibers. This 

condition corresponds to optical waveguides and photonic 

crystals with gradient convex profile of the refractive 

index (Fig. 2). Such types of optical fibers have a number 

of applications in different nonlinear devices, controlling 

and manipulating laser light. They are used in modern 

optical sensors and communication systems, as parts of 

optical computers, lenses and mirrors in thin-film optics 

[21-26]. 

We are looking for vortices solutions of the partial 

differential equation (2) for the vector amplitude 

function Φ⃗⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) = (𝑈, 𝑉, 0).    

The following system of scalar equations for each of 

the components U and V of the vector amplitude function 

is formed: 
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where  

 

U= 𝑈𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝑉 = 𝑈𝑦(𝑥, 𝑦, 𝑧, 𝑡).                 (5) 

 

In order to find a solution of the system (3) and (4) we 

use the following mathematical algorithm: 

 We will work in cylindrical coordinates: 
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 After the applied transformations, the system of 

equations (3) and (4) takes the form: 
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 We make the following substitutions:      

 

),()(),( 111 TrRtzKU 
                     (9)    

 

 
),()(),( 222 TrRtzKV 

                  
(10) 

 

where K1, K2, R1, R2, T1 and T2 are new unknown 

amplitude functions of the variables z, t, r and θ. 

We assume that Т is given by the expression: 
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After the substitution of expressions (9), (10) and (11) 

in equations (7) and (8) we obtain: 
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To find the solutions of the equations (12) and (13) it 

is necessary to divide the variables. In the obtained system 

first term in brackets isn’t function of r and the last two 

terms are not functions of t and z. In order to keep the 

equality it is necessary the expressions in the brackets, on 

both sides of the system, to be equal to zero. 
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According to our mathematical algorithm, we assume 

that the phase function has the form: 
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After applying the substitution above in equations 

(14) and (16), we obtain the following connection between 

the unknown constants: 
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Our next step is to make another substitution for the 

functions R1 and R2: 
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where A is a constant. 
After the substitution of expressions (20) in equations 

(15) and (17) we obtain: 
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From the equation (21) we can define the constant A: 
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and the constant m is connected with the spatial refractive 

index of the optical fiber: 
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Thus, going back through all the substitutions and 

assumptions, we have found exact analytical solutions of 

the system of equations (3) and (4), describing the 

formation of vortices in convex gradient optical fiber in 

the case of b=1: 
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In the case of a concave gradient fiber (Sg> 0) 

following the same mathematical algorithm, we can find 

new solutions. These new solutions have the same 

constants as those for gradient fiber with a positive Sg 

number.  In contrast to the solutions found in [20] here the 

amplitude function Φ is expressed not by hyperbolic 

functions, but as simple trigonometric functions.  
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where n is the vortex number, n>1, n= 2,3,4... 

The solutions (27) and (28) present the components 

(U’ and V’) of the vector electrical field 


of the 

amplitude function. The parameter n corresponds to the 

angular distribution of the vortex structure. This vortex 

parameter needs to have values other than zero in order to 

form vortex structures. In the case of n=0 there are no 

solutions of the basic vector system of nonlinear 

equations. 

The usual scalar theory of optical vortices is linear 

and that’s why the amplitude constants are not presented 

in the obtained linear dispersion relation. The solutions 

(25) - (28) of the corresponding nonlinear vector system 

(7) - (8) arise new nonlinear dispersion relations where the 

balance is not only between diffraction and nonlinearity, 

but also between nonlinearity and angular distribution of 

the optical vector field.  

 
 
3. Numerical calculations 
 

We have performed a couple of numerical 

calculations, based on the solutions (27) and (28) of the 

system of equations (3) and (4). Pulses propagating in 

nonlinear dispersive fibers with spatial dependence of the 

refractive index and different values of vortex number n 

are presented in the following figures. The intensities of 

the optical vortices according to the analytical solutions 

(27) and (28) for negative sign of Sg parameter and vortex 

number n=2 are of the kind: 
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In Fig. 3 (a) and (b) are shown the profiles of the 

components 
2

U and 
2

V of the amplitude function of the 

optical vortex for Sg<0. It is observed a symmetrical 

distribution of the pulse intensity.  

 

 

 
 

 
 

Fig. 3. Intensity profiles of the components (a) U and (b) 

V in the case of Sg<0 and n=2 (color online) 

 

 

On Fig. 4 it is presented the intensity profile of the 

vortex structure. It is also observed a symmetrical 

distribution of the vortex energy in the pedestal. 
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Fig. 4. Intensity profile of the optical vortex in the case of 

Sg<0 and n=2 (color online) 

 

 
 

 Fig. 5. Diagram of the vector amplitude function for 

n=2 in the case of Sg<0. Rotation of the vector of the 

electrical field along the periphery is observed (color 

online) 

 

On Fig. 5 it is shown the diagram of the vector 

amplitude function of the optical vortex in the case of 

Sg>0 for n=2. Significant rotation of the vector of the 

electrical field along the periphery of the vortex is 

observed.  

In the second case we consider the vortex solutions 

(27) and (28) with a positive sign of the parameter Sg 

(Sg>0). They are of the kind: 
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In Fig. 6 (a) and (b) the profiles of the components
2

U  and 
2

V  of the amplitude function of the optical 

vortex for n=2 are presented. In this case the distribution 

of the intensity of the pulse is also symmetrical. 

 

 

 
 

 
Fig. 6. Intensity profiles of the components (a) U  and 

(b) V  in the case of Sg>0 and n=2 (color online) 

 

In Fig. 7 it is presented the intensity profile of the 

vortex structure. It is observed a symmetrical distribution 

of the vortex energy in the pedestal. 
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Fig. 7. Intensity profile of the optical vortex in the case of 

Sg>0 and n=2 (color online) 

 

On Fig. 8 it is shown the diagram of the vector 

amplitude function of the optical vortex in the case of 

Sg>0 for n=2. Significant rotation of the vector of the 

electrical field in the center of the vortex is observed. 

 

 
 

Fig. 8. Diagram of the vector amplitude function for n=2 

in the case of Sg >0. Significant rotation of the vector of 

the electrical field in the center of the vortices is 

observed (color online) 

 

 

4. Conclusions 
 

In the present paper a new class of vector optical 

vortices in convex gradient fibers with spatial dependence 

of the refractive index is presented. These vector solutions 

have no singularity in the phase. 

Numerical simulations of the exact analytical 

solutions were made in two cases, depending on the 

coefficient Sg, taking into account the spatial dependence 

of the refractive index. Again, as in our previous work 

[20], the nonlinear dispersion relations of these vector 

vortex solutions are obtained as balance between 

diffraction, nonlinearity and angular distribution of the 

field. Thus, a stability of these vortices can be expected. In 

an experiment these vector vortices will look like a special 

(vortex) type of depolarization of the vector field in the 

spot diameter. 
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